An ultrasensitive near-infrared satellite SERS sensor: DNA self-assembled gold nanorod/nanospheres structure

نویسندگان

  • Nan Yang
  • Ting-Ting You
  • Xiu Liang
  • Chen-Meng Zhang
  • Li Jiang
  • Peng-Gang Yin
چکیده

Coupled plasmonic assemblies have recently attracted tremendous research interest in the field of Surface Enhanced Raman Scattering (SERS) due to their unique optical and biocompatible properties. Using DNA to connect different parts of assembled plasmonic nanostructures has been a simple but useful method to achieve the expected nanocomposites. This work prepared a satellite SERS substrate based on gold nanorod/gold nanosphere structures, in the hope of providing a novel SERS sensor for biomedicine related applications. A seed growth method was adopted to fabricate gold nanorods, using a region specific method to connect the gold nanorod core with the gold nanosphere satellites. The fabricated nanocomposites were further self-assembled with p-mercaptobenzoic acid (p-MBA) molecule layers as Raman reporters for SERS experiments. The obtained satellite nanostructure could produce “hot spots” between the gold nanorods and gold nanospheres to improve the SERS sensitivity and also to function as a key factor to tune the localized surface plasmon resonance (LSPR) absorption band to the nearinfrared region. Finally, the optimized satellite SERS sensor was applied in the detection of Crystal Violet (CV) with a limit of detection as low as 10 11 M, proving that the self-assembled nanocomposite could act as an effective substrate for single molecule detection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Site-selective localization of analytes on gold nanorod surface for investigating field enhancement distribution in surface-enhanced Raman scattering.

Understanding detailed electric near-field distributions around noble metal nanostructures is crucial to the rational design of metallic substrates for maximizing surface-enhanced Raman scattering (SERS) efficiency. We obtain SERS signals from specific regions such as the ends, the sides and the entire surfaces of gold nanorod by chemisorbing analytes on the respective areas. Different SERS int...

متن کامل

Ultrasensitive and selective homogeneous sandwich immunoassay detection by Surface Enhanced Raman Scattering (SERS).

In this report, a simple and highly selective homogeneous sandwich immunoassay was developed for ultrasensitive detection of Staphylococcal Enterotoxin B (SEB) using Surface Enhanced Raman Scattering (SERS). The assay uses polyclonal-antibody functionalized magnetic gold nanorod particles as capture probes for SEB, which can be collected via a simple magnet. After separating SEB from the sample...

متن کامل

A rapid method for detection of genetically modified organisms based on magnetic separation and surface-enhanced Raman scattering.

In this study, a new method combining magnetic separation (MS) and surface-enhanced Raman scattering (SERS) was developed to detect genetically modified organisms (GMOs). An oligonucleotide probe which is specific for 35 S DNA target was immobilized onto gold coated magnetic nanospheres to form oligonucleotide-coated nanoparticles. A self assembled monolayer was formed on gold nanorods using 5,...

متن کامل

A single gold nanorod as a plasmon resonance energy transfer based nanosensor for high-sensitivity Cu(II) detection.

Plasmon resonance energy transfer (PRET) has been widely applied in the detection of bio-recognition, heavy metal ions and cellular reactions with high sensitivity, based on the overlap between the plasmon resonance scattering band of nanoparticles and the absorption band of the surface-modified chromophore molecules. Previous sensors based on PRET were all implemented on gold nanospheres with ...

متن کامل

Ordered array of gold semishells on TiO2 spheres: an ultrasensitive and recyclable SERS substrate.

Ordered array of Au semishells on TiO(2) spheres with controlled size are prepared by combining the nanosphere self-assembly and atomic layer deposition (ALD). This ordered 2-D structure with designed array of metal nanogaps can be used as an ultrasensitive surface-enhanced Raman scattering (SERS) substrate with high reproducibility and stability. More importantly, the SERS substrates are recyc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017